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Abstract
Objective: Develop a novel technique to identify an optimal number of regression units corresponding to a single risk point, while creating risk 
scoring systems from logistic regression-based disease predictive models. The optimal value of this hyperparameter balances simplicity and 
accuracy, yielding risk scores of small scale and high accuracy for patient risk stratification.
Materials and Methods: The proposed technique applies an adapted line search across all potential hyperparameter values. Additionally, 
DeLong test is integrated to ensure the selected value produces an accuracy insignificantly different from the best achievable risk score accu-
racy. We assessed the approach through two case studies predicting diabetic retinopathy (DR) within six months and hip fracture readmissions 
(HFR) within 30 days, involving cohorts of 90 400 diabetic patients and 18 065 hip fracture patients.
Results: Our scores achieve accuracies insignificantly different from those obtained by existing approaches, reaching AUROCs of 0.803 and 
0.645 for DR and HFR predictions, respectively. Regarding the scale, our scores ranged 0-53 for DR and 0-15 for HFR, while scores produced by 
existing methods frequently spanned hundreds or thousands.
Discussion: According to the assessment, our risk scores offer simple and accurate predictions for diseases. Furthermore, our new DR score 
provides a competitive alternative to state-of-the-art risk scores for DR, while our HFR case study presents the first risk score for this condition.
Conclusion: Our technique offers a generalizable framework for crafting precise risk scores of compact scales, addressing the demand for 
user-friendly and effective risk stratification tool in healthcare.
Key words: disease prediction; risk scoring system; hyperparameter search; electronic health record. 

Introduction
Risk scoring systems have emerged as a favored approach to 
predict a range of health conditions in diverse healthcare set-
tings. Notable examples include the Framingham Risk 
Scores1,2 and SCORE3 for foreseeing coronary heart disease, 
LACE4 and HOSPITAL5 for anticipating death or readmis-
sion after hospital discharge, IScore6 for predicting death and 
disability after an acute stroke, and Mortality Risk Score7 for 
estimating mortality in adults. These risk scoring systems 
often trace their development methodology back to the 
regression coefficient-based scoring principles.8 Building 
upon these foundational principles, Sullivan et al9 presented 
a comprehensive and systematic approach that has found sig-
nificant traction in real-world healthcare scenarios and has 
been employed in creating well-known scoring systems such 
as the Framingham Risk Score and LACE.

The benefits of risk score systems are manifold. Firstly, 
they can provide clinicians with an easy-to-understand tool 
for estimating patient risk and making informed medical 
decisions.2,10 By utilizing score systems, healthcare professio-
nals can assess the likelihood of specific health outcomes or 
complications, aiding in treatment plans and preventive 
measures.11,12 Additionally, a user-friendly risk score system 
also promotes patient engagement and behavior change. 
When patients understand their risk scores, they are more 
likely to comprehend potential health consequences, leading 
to active participation in health management and adopting 
beneficial lifestyle changes.9

Although the risk score system offers many advantages, lit-
tle improvement has been made to the score derivation meth-
odology since the earlier work performed by Sullivan et al.9

A notable gap pertains to a hyperparameter defined as the 
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number of regression units in the disease prediction model to 
be mapped to a single point in the risk scoring system. A typi-
cal example of the “regression units” is the log-odds in the 
logistic regression model. For simplicity, we henceforth 
denoted this hyperparameter as B. Specifically, the gap is that 
effective approaches in determining a suitable value for B 
have not been adequately explored. The B value is important 
as it determines the granularity of the risk score. Higher gran-
ularity, corresponding to low B values, means using more 
risk score points to correspond to a given amount of 
regression-modeled risk. It results in a larger and more com-
plex scale for the score system, which may introduce practical 
inconveniences in real-world implementation. On the plus 
side however, an intuitive benefit of the highly granular scor-
ing system is that it captures a greater amount of information 
from the original regression model, consequently preserving 
better predictive accuracy, as measured by area under ROC 
curve (AUROC).13 When a scoring system has low granular-
ity, intuitively, it sacrifices information from the regression 
model, thereby compromising accuracy. Nonetheless, rela-
tively low granularity results in a smaller scale that finds 
widespread adoption in real-world healthcare settings due to 
its simplicity. Notable examples of risk scores with narrowed 
ranges that have gained significant usage in practical health-
care contexts include LACE4 and HOSPITAL.5 Therefore, 
addressing the challenge posed by scoring systems with either 
a low granularity, resulting in reduced predictive precision, 
or a highly granular scale leading to practical inconveniences, 
necessitates the development of a scoring approach that 
strikes a balance between the scale simplicity and the predic-
tion accuracy. Although grid search, a classical hyperpara-
meter tuning technique in machine learning, may be used to 
handle the issue, it can be computationally intensive when 
dealing with a multitude of hyperparameters, each having a 
wide range of possible values.14

In order to fill the gap, we have established two main 
objectives for this study: (1) Develop a novel hyperparameter 
search algorithm to identify the “best” amount of regression 
units in a disease prediction model, which should correspond 
to a single point in a risk scoring system for achieving a bal-
ance between the scale and accuracy for the risk score. (2) 
Assess the algorithm’s ability to generate compact-scale risk 
scores that preserve the majority of predictive accuracy from 
the root regression models by conducting two case studies, 
one on predicting diabetic retinopathy (DR) and the other on 
predicting hip fracture readmission (HFR).

Methods
Data source and preprocessing
In this study, we utilized the Oracle Cerner Health Facts Elec-
tronic Health Records (EHR) data warehouse as our data 
source. Health Facts comprises clinical data extracted from 
over 200 hospitals across the United States that operate on 
Cerner EHR systems during 2000-2018. The data encom-
passes a wide range of information, including patients’ time- 
stamped encounters, demographics, diagnoses, procedures, 
medications, laboratory results, vital signs, etc. Oracle Cerner 
collects and integrates the data in accordance with estab-
lished procedures that adhere to the Health Insurance Port-
ability and Accountability Act (HIPAA) laws. The 
Institutional Review Boards (IRB) at Oklahoma State 

University (OSU) exempted the study from review because 
the data has been completely de-identified according to 
HIPAA regulations. All the data collection, preprocessing, 
and analysis involved in this study were performed on the 
devices hosted at OSU.

Our two case studies involved leveraging large-scale EHR 
datasets from Health Facts to predict DR and HFR. DR is a 
complication of diabetes that can cause vision loss or blind-
ness over time if not diagnosed early enough and left 
untreated.15,16 Hip fractures (HF) significantly increase mor-
bidity and mortality in older adults, frequently resulting in 
post-discharge readmissions.17,18 Both are significant condi-
tions drawing extensive research attention and warranting 
further investigation.

� DR Data: We extracted the DR case and control cohorts 
using the same diagnosis codes and a similar cohort deri-
vation method as utilized in a prior study by Wang 
et al.19 Together with the cohorts, we gathered 31 varia-
bles related to patient’s demographics, duration of diabe-
tes, complications, and laboratory results, all of which 
have been shown in the literature to be significantly asso-
ciate with DR.20–24 In the predictive modeling, the values 
of these variables, during a two-year window that was 6 
months preceding the first diagnosis of DR, were averaged 
to predict whether DR would occur within the 6-month 
period. This approach models the DR prediction in six 
months given a diabetic encounter and history in past two 
years.19,25 Subsequently, we applied the complete-case 
preprocessing method to these variables. After preprocess-
ing, the variables maintained distributions close to those 
of the raw data (the distribution plots are available in Sec-
tion B of the Supplementary Material). Next, we applied 
a machine learning-based ensemble predictor selection 
method26 to identify a reduced set of key predictors from 
the 31 variables. These key predictors enabled us to create 
a concise yet accurate risk scoring system. 

� HFR Data: Regarding the selection of the patient cohort 
for HFR, we extracted data from Health Facts and fol-
lowed a cohort derivation method similar to that used in 
a prior HFR study.27 The data comprised patient demo-
graphics, historical visits, diagnoses, procedures, and 
seven laboratory results, constituting the initial set of vari-
ables for our analysis. To maintain methodological con-
sistency across both case studies, we applied the same 
complete-case preprocessing and predictor selection meth-
ods used for DR data to this HFR dataset as well. Beyond 
the processing, the selected key predictors were utilized to 
predict all-cause readmissions within 30 days from the 
HF inpatient visits. 

Detailed diagnosis and procedure codes for patient extrac-
tion, flow charts outlining data preprocessing, and initial sets 
of variables for analysis for the two case studies are provided 
in Section A of the Supplementary Material. For both study 
cohorts, we randomly partition the data into training (70%) 
and test subsets (30%) for predictive analysis.

Risk score derivation methods
Figure 1 shows a risk scoring framework adapted from the 
one established by Sullivan et al,9 serving as the foundational 
pipeline for our risk score derivation. Our novel 
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hyperparameter search approach centers on the step of Set-
ting Hyperparameter B, aiming to develop simple yet accu-
rate risk scores, as detailed in the following.

Scoring framework
Step 1. Logistic Regression Modeling: Construct a logistic 

regression model to predict the presence of a health 
condition (modeled as a binary target variable y) 
based on n predictors, denoted by x1;x2; . . . ;xn. The 
model can be represented as Equation (1): 

ln
p

1 − p
¼ β0þ

Xn

i¼1

βixi; (1) 

where p represents the probability that y¼1, indi-
cating that patients developed DR or were readmit-
ted respectively in our two case studies. The value 
ln p

1 − p, known as “log-odds,” is used to model 
patient risk of having the health condition. While β0 

is the intercept and βi represents the coefficient for 
the predictor xi.

Step 2. Variable Discretization: Convert continuous predic-
tors to categorical variables by discretizing them into 
multiple intervals (aka the levels of the resulted 

ordinal categorical variables) using meaningful cut-
offs based on medical expertise. Statistical methods, 
such as percentile-based cutoffs, are frequently 
employed to discretize continuous variables in the lit-
erature.12 Our comparison (provided in Section C of 
the Supplementary Material) revealed minor differen-
ces in AUROC between the medically meaningful 
and statistical cutoffs. Hence, in this article, we focus 
on reporting the results based on medically meaning-
ful discretization due to the clinical relevance and 
interoperability of this approach.

Step 3. Regression Unit Measurement for Levels: This step 
involves measuring the regression units, specifically 
log-odds in our case, for every level of each categori-
cal variable. The measurement follows the subse-
quent procedure: Given any variable xi, we first 
determine a reference value for each level, which is 
the mid-value for intervals and a modeled value in 
logistic regression for categorical variables (eg 0 for 
modeling female and 1 for modeling male). Then, the 
level with the lowest reference value corresponds to 
the lowest-risk level if the coefficient is positive; oth-
erwise, it is the level with the highest reference value. 
Denote the reference value of the lowest-risk level as 

Obtain a candidate interval 
[ Bmin ,T ] with T = Bmax

Refine the candidate interval 
by shifting T towards Bmin using 
golden section principle

AUROC at T ≥ 
99% of AUROC 

at Bmin ?

Find Bhighest that has the highest 

AUROC within [ Bmin, T ]

Search over B values from T
towards Bhighest

AUROCs at B 
and Bhighest are 
insignificantly 

different?

No

Yes

Start

Yes

No

No

Step 1: Logistic 
Regression 
Modeling

Step 2: Variable 
Discretization

Step 3: Level 
Measurement

Step 4: Setting 
Hyperparameter

Step 5: Risk 
Score Calculation

Proposed
hyperparameterhyperparameter
search approach

Return current B 
value as B

Step 4.1

Step 4.2

Step 4.3

Step 4.4

Figure 1. Flowchart illustrating the risk score derivation framework and our refinements in Step 4. In this illustration, B denotes the number of regression 
units in the disease prediction model to be mapped to a single point in the risk scoring system. T is the right end of the candidate interval of B values, and 
updated iteratively in the algorithm.
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Wmin, then for a level of xi with reference value of W, 
the log-odds assigned to the level are expressed as 
βiðW −WminÞ.

Step 4. Setting Hyperparameter B: The hyperparameter, in 
this case, is the number of log-odds corresponding to 
a single risk score point. It can be determined by mul-
tiplying the coefficient of a selected base variable by 
a factor, such as βage×5. However, the approaches 
for selecting the base variable and the factor in cur-
rent literature lack a delicate design to generate risk 
scores that achieve both high simplicity and accu-
racy. Our novel hyperparameter search algorithm, 
elaborated in the next subsection on 
“Hyperparameter Searching,” addresses this gap, 
constituting the primary innovation of this study.

Step 5. Risk Score Calculation: Once B is determined, the 
associated risk score for each level of a predictor can 
be calculated using the formula βiðW −WminÞ=B and 
round it to the nearest integer. The overall risk score 
of a patient will be the sum of the risk scores corre-
sponding to each variable’s measurement of the 
patient.

Hyperparameter searching
As discussed in the Introduction section, a smaller value for 
the hyperparameter B leads to a more granular risk score, 
preserving greater predictive power from the regression 
model. However, it may result in an unnecessarily large scale, 
posing inconvenience for clinical applications. On the other 
hand, a larger B value yields a simpler scale but incurs a loss 
of accuracy. Hence, a clever choice of the B value is crucial 
for simplifying the risk score system without compromising 
accuracy. Many scores used a multiple of βage,

4,6,7,9 to 
account for increasing risk associated with aging, while some 
other studies employed the smallest coefficient5,12 to ensure 
all scores to be larger than one. However, none of the 
approaches adequately considered both the scale and accu-
racy of the risk score. Grid-search-based enumeration across 
all predictors and all potential factor values for each predic-
tor is an intuitive approach to tackle the issue, but it can be 
computationally expensive and time-consuming.14 Our new 
approach, rather than engaging in a two-dimensional search 
across variables and factors, executes a uni-dimensional 
search directly over all feasible B values. The flow diagram is 
illustrated in Figure 1, with steps explained below:

Step 4.1 Obtain all possible B values by multiplying the coef-
ficient of each variable by all potential factor values 
(we used 1;2; . . . ;10 in our implementation). Then, 
sort the resulting B values in an ascending order and 
define a candidate interval ½Bmin;T� with T ¼ Bmax 

initially to cover the entire range of B values.
Step 4.2 Iteratively refine the candidate interval by adjusting 

the right endpoint T from Bmax towards Bmin until 
the accuracy at T reaches at least 99% of the accu-
racy at Bmin. In our implementation, we measure 
accuracy using AUROC. The endpoint adjustment 
adheres to the golden section principle.28 In other 
words, for each iteration, the new value of T is 
updated as T0− 0:382× ðT0−BminÞ, where T0 repre-
sents the previous value of T.

Step 4.3 Within the refined candidate interval ½Bmin;T�, iden-
tify the B value associated with the highest AUROC, 
denoted as Bhighest.

Step 4.4 Search from the right endpoint of the refined candi-
date interval T towards Bhighest to find the first B 
value whose AUROC is insignificantly different 
from that of Bhighest via DeLong test at a 0.01 signifi-
cance level.29 Finally, return the found B value, 
denoted as B�.

The benefit of this search strategy is that we can leverage the 
intuition that with the increase of B, the AUROC demon-
strates an overall declining trend as larger B tends to yield 
less granularity in the risk score. The trend enables us to per-
form directional search to find a suitable B value sooner. Spe-
cifically, Step 4.2 enables us to quickly skip B values close to 
the right end of the trend that are associated with low accura-
cies, as illustrated in Figure 2. Furthermore, once the refined 
candidate interval is determined, the search from T to Bhighest, 
as described in Step 4.4, saves effort of performing DeLong 
test exhaustively for the B values less than Bhighest.

All the data cleaning, analysis and algorithm development 
presented in this article were implemented using Python 3.10. 
The logistic regression models used in this study were created 
and executed using the “glmðÞ” function from the Python 
statsmodels 0.14.0 module. Our code is publicly available on 
GitHub at https://github.com/yajun668/RiskScoring.

Results
Descriptive statistics of case study cohorts
After preprocessing, our DR cohort consisted of 90 400 dia-
betic patients, among whom 3380 were diagnosed with DR. 
The HFR cohort included 18 065 HF patients, among whom 
2055 were readmitted to the hospital within 30 days from 
their HF inpatient visits. The selected key predictors and their 
detailed statistics within the training and test datasets of the 
two cohorts are presented in Table 1, showing insignificant 
difference across all variables except for creatinine between 
the training and test datasets.

Trend between AUROC and B
Figure 3A and C depicts the relationships between AUROC 
and B values for DR and HFR predictions, respectively. Both 
plots demonstrate a consistent downward trend, aligning 
with the intuitive expectation that higher B values lead to 
lower granularity of the risk scoring system, ultimately com-
promising its accuracy. Figure 3B and D provides zoomed-in 
views of the refined candidate intervals, showing that Bhighest 

does not necessarily coincide with the smallest B. Further-
more, many AUROCs in the interval appear very close, indi-
cating that towards the right-hand side of the interval, there 
are competitive B values that could result in narrower scales 
of risk scores, with statistically insignificant differences in 
accuracy compared to that at Bhighest. All the observations 
favorably support the design of our proposed hyperpara-
meter search algorithm.

Score system comparison
To assess the effectiveness of our proposed approach, we 
compared the risk scores developed using B� with those 
derived based on 5βage and Bmin—two commonly used values 
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for the hyperparameter B in the literature. Table 2 summa-
rizes the AUROCs and scales of the risk scores across differ-
ent B values. Upon observation, our algorithm consistently 
generates risk scores closely aligned with those obtained 
using other B values in terms of AUROC. It is worth noting 
that, though the AUROC associated with B� is slightly lower 
than those associated with other B values for HFR, the differ-
ence is statistically insignificant according to DeLong test. 
Remarkably, the scales of the risk scores derived through our 
approach exhibit much simpler ranges. In the context of DR 
prediction, our risk score ranged up to only 53, in contrast to 
191 for 5βage and 11 018 for Bmin. Similarly, for HFR predic-
tion, our highest score is only 15, whereas 5βage and Bmin 

have ranges with the highest score as high as 93 and 18 728, 
respectively.

We additionally compared the risk scores with the corre-
sponding logistic regression models—the root model from 
which the scores are derived—in terms of AUROC. The 
AUROC plots are displayed in Figure 4, illustrating marginal 
differences, up to 0.029 (as observed for 5βage for DR), 
between the predictive accuracy achieved by the risk scores 
and that of logistic regressions. This aligns with what has 
been reported in the literature,19 reiterating the effectiveness 
of the entire risk scoring framework in maintaining strong 
predictive capacity from logistic regressions. Figure 4 also 
shows comparable area under the precision-recall curve 
(AUPRC)30 across evaluated risk scores for each condition. 
They all outperformed random models, suggesting their abil-
ity in differentiating patients by disease risk. DR risk scores 
outperformed the random model to a greater extent than 
HFR risk scores, which aligns with AUROC findings. How-
ever, the class imbalance in our data likely limited AUPRC 
performance. Integrating techniques for handling imbalanced 

data into regression models has the potential to improve 
AUPRC for risk scores.

Furthermore, we report the new risk score systems for DR 
and HFR in Table 3. Note that the risk score derived using 
5βage for DR, presented in the table, is essentially a variation 
of the score system proposed by Wang et al19 with two addi-
tional predictors and slightly adjusted scores for certain lev-
els. Compared to it, the risk score derived using our 
approach, B�, significantly simplified the system, by aggregat-
ing many levels across a multitude of predictors, such as <60 
and ½60;80Þ for glucose, as well as “African American” and 
“Other” for race. These levels can be combined because they 
share the identical risk points. A similar finding can be 
observed for the HFR risk score as well. Many levels can be 
combined, for instance, <65 and ½65;75Þ for age, and <9 and 
½9;9:7Þ for hemoglobin. More interestingly, our new scoring 
system requires an even more concise set of nine predictors, 
specifically BUN, hemoglobin, hematocrit, length of stay, 
preInp1Y, preER1Y, Charlson comorbidity index, age, and 
platelet count, rather than the 12 variables chosen by feature 
selection, because the other predictors exhibit 0 risk points 
across all levels, resulting in no effect on final risk score.

Discussion
The widespread deployment of EHR systems has made a tre-
mendous volume of digitized clinical data available. Coupled 
with advancements in medical informatics and analytics, it 
has provided valuable and actionable insights for addressing 
a wide range of healthcare challenges, including the high-cost 
patients identification, disease prediction, patient triaging, 
and treatment plan optimization, among others.31–34

Machine learning and deep learning models are often 
employed to tackle the challenges because of their high 

Figure 2. An illustration of the search trajectory of the developed hyperparameter search algorithm.
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predictive accuracy.35–37 However, the inherent black-box 
nature of machine/deep learning often poses challenges in 
interpreting the results for clinicians.38 Additionally, many 
existing EHR systems in hospitals lack support for complex 
machine-learning models.39

In contrast, risk scores are easy to interpret, understand, 
and implement in healthcare settings, contributing to their 
considerable attention and real-world applications. The novel 
hyperparameter search algorithm developed in this study 

enable the creation of simple yet accurate risk scores, which 
can support medical decision making in various aspects of 
patient care. Firstly, risk scoring systems developed using 
comprehensive socioeconomic and clinical determinants ena-
ble healthcare professionals to compute patients’ risk of 
developing specific conditions in the future. A high risk score 
can serve as early-warning tool, prompting timely interven-
tion for effective care management. Additionally, the risk 
score’s interpretability, along with insights into how each 

Table 1. Descriptive statistics on training and test datasets for DR and HFR predictions.

DR dataset

Training Test P-valuea

Non-DR DR Non-DR DR Non-DR DR

# Patient (%) 60 936 (96.3) 2344 (3.7) 26 084 (96.2) 1036 (3.8) – –
Creatinine, mean (SD) 1.06 (0.45) 1.96 (1.88) 1.06 (0.45) 1.80 (1.60) 0.355 0.018
HbA1c, mean (SD) 7.13 (1.50) 8.35 (2.03) 7.14 (1.51) 8.39 (1.97) 0.173 0.605
Diabetes duration, mean 

(SD)
1.92 (1.76) 2.75 (2.02) 1.92 (1.77) 2.76 (2.05) 0.999 0.929

White blood cell, mean 
(SD)

8.11 (2.19) 7.97 (2.21) 8.12 (2.19) 8.01 (2.31) 0.547 0.619

Glucose, mean (SD) 142.42 (46.17) 173.96 (61.61) 142.61 (46.24) 174.75 (62.36) 0.575 0.733
Age, mean (SD) 64.16 (14.08) 60.47 (13.37) 64.05 (14.07) 60.82 (12.77) 0.306 0.475
Hematocrit, mean (SD) 38.99 (4.71) 36.23 (4.72) 39.04 (4.69) 36.42 (4.71) 0.233 0.294
Sodium, mean (SD) 138.87 (2.46) 138.59 (2.37) 138.86 (2.45) 138.48 (2.39) 0.537 0.249
BUN, mean (SD) 19.66 (9.45) 27.45 (14.78) 19.67 (9.57) 26.82 (14.51) 0.846 0.245
Anion gap, mean (SD) 9.47 (2.55) 9.52 (2.71) 9.45 (2.55) 9.36 (2.62) 0.419 0.131
Nephropathy ¼ yes (%) 3030 (5.0) 656 (28.0) 1281 (4.9) 278 (26.8) 0.715 0.516
Neuropathy ¼ yes (%) 5197 (8.5) 782 (33.4) 2190 (8.4) 349 (33.7) 0.529 0.884

Race (%)
African American 10 867 (17.8) 897 (38.3) 4669 (17.9) 377 (36.4)
Caucasian 45 355 (74.4) 1270 (54.2) 19 332 (74.1) 586 (56.6) 0.417 0.435
Other 4714 (7.7) 177 (7.6) 2083 (8.0) 73 (7.0)

HFR dataset

Training Test P-valuea

Non-HFR HFR Non-HFR HFR Non-HFR HFR

# Patient 11 226 (88.78) 1419 (11.22) 4784 (88.27) 636 (11.73) – –
Age, mean (SD) 80.01 (9.80) 80.87 (9.22) 80.05 (9.74) 81.26 (9.04) 0.823 0.373
Length of stay, mean (SD) 5.32 (2.79) 6.18 (3.53) 5.34 (2.78) 6.27 (3.36) 0.819 0.607
Platelet count, mean (SD) 209.64 (81.53) 216.67 (89.54) 210.16 (82.10) 219.50 (91.35) 0.711 0.511
BUN, mean (SD) 19.53 (10.97) 24.01 (14.37) 19.55 (11.25) 23.87 (13.29) 0.904 0.835
Hemoglobin, mean (SD) 10.11 (1.34) 10.07 (1.31) 10.14 (1.35) 10.10 (1.29) 0.115 0.640
Creatinine, mean (SD) 0.97 (0.61) 1.15 (0.80) 0.97 (0.60) 1.11 (0.74) 0.748 0.307
Hematocrit, mean (SD) 30.06 (3.84) 30.09 (3.86) 30.17 (3.86) 30.12 (3.85) 0.093 0.860
CCI, mean (SD) 1.29 (1.48) 1.72 (1.61) 1.30 (1.48) 1.67 (1.61) 0.595 0.541
Potassium 4.02 (0.44) 4.06 (0.46) 4.01 (0.43) 4.04 (0.47) 0.200 0.452
Sodium 137.09 (3.74) 137.23 (4.03) 137.06 (3.77) 137.20 (3.81) 0.617 0.852

preInp1Yb (%)
0 8335 (74.2) 926 (65.3) 3571 (74.6) 389 (61.2)
1 1809 (16.1) 244 (17.2) 745 (15.6) 131 (20.6) 0.684 0.132
2 1082 (9.6) 249 (17.5) 468 (9.8) 116 (18.2)

preER1Yc (%)
0 7230 (64.4) 792 (55.8) 3068 (64.1) 321 (50.5)
1 2127 (18.9) 288 (20.3) 906 (18.9) 152 (23.9) 0.905 0.063
2 1869 (16.6) 339 (23.9) 810 (16.9) 163 (25.6)

Abbreviation: CCI ¼ Charlson Comorbidity Index.
a The P-values are associated with the statistical tests comparing variable differences between the training and test datasets.
b Number of inpatient visits within 1 year before.
c Number of emergency department visits within 1 year before.
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feature contributes to the total risk score, empowers patients 
to better grasp the factors that pose health risks. With the 
knowledge, patients are more likely to take action to address 
the factors that negatively impact their health.40,41

Compared to the state-of-the-art DR risk score,19 our new 
DR risk score system, generated using the algorithm pro-
posed in this study, exhibits equivalently high accuracy with 
a significantly simpler scale. As for the risk score for HFR, to 
the best of our knowledge, this is the first study in developing 
a risk score system for this condition. The two new risk score 
systems not only demonstrate the effectiveness of our pro-
posed approach but also offer highly potential alternatives, 
once externally validated, for the prediction and risk 
stratification for DR and HFR respectively. Furthermore, 
while our case studies concentrated solely on two conditions, 

DR and HFR, our approach can serve as a general frame-
work for developing risk scores for other health conditions 
as well.

Recommendations for accurate risk scoring
Our technique enables the creation of concise risk scores 
closely mirroring the accuracy of regression models. There-
fore, robust regression models are the cornerstone for accu-
rate risk scoring. Various factors spanning data collection, 
preprocessing, modeling, and deployment influence regres-
sion modeling, subsequently the accuracy of risk score, in 
real-world disease prediction applications. Key considera-
tions encompass data representativeness, incorporation of 
comprehensive socioeconomic and clinical variables, han-
dling missing values, addressing data imbalance, and the geo-
graphical and care setting differences between modeling and 
deployment. Analysts should select data from sources aligned 
with the geographic and care settings where the model will be 
deployed and thoroughly evaluate the data quality before 
modeling to ensure the relevance and robustness of their 
models in the target settings.42,43 Various methods exist for 
handling missingness and imbalance within health data, yet 
there is a lack of widespread consensus and acceptance within 
the scientific community regarding the most effective method-
ology.44,45 Distinct methodologies yield different models and 
predictive outcomes.46 Analysts should carefully consider 

Figure 3. The AUROC and B relationships for DR (A and B) and HFR (C and D). (A) and (C) provide overall trends over all B values considered. (B) and (D) 
provide zoomed-in views of the AUROC-B relationship for DR and HFR, respectively.

Table 2. Comparison of AUROCs and risk score scales between the 
proposed method (B�) and existing approaches (Bmin and 5βage) for DR 
and HFR.

AUROC Score scale

B� 5βage Bmin B� 5βage Bmin

DR 0.803 0.802 0.804 0-53 0-191 0-11 018
HFR 0.645 0.651 0.652 0-15 0-93 0-18 728
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various aspects, such as clinical relevance, interpretability, 
generalizability, and accuracy, for optimal model selection. 
When incorporating variables, analysts should thoroughly 
examine available metrics concerning both health and socioe-
conomics, then leverage clinical and biological expertise, 
along with feature selection techniques,47 to identify essential 
predictors for accurate modeling. EHR data is rich in clinical 
data but often lacks socioeconomic variables, which are cru-
cial for understanding and addressing many health condi-
tions.48–52 By integrating socioeconomic factors into 
EHR,53,54 the endeavor of crafting more comprehensive and 
accurate risk scores can be significantly bolstered.

Limitations
There are several limitations with this study. (1) Our risk 
scoring algorithm is essentially a statistical approach reveal-
ing associations rather than establishing causality. The gener-
ated risk scores should be viewed as decision support tools 
for healthcare professionals, with application and interpreta-
tion contingent upon clinical expertise. (2) In the case studies, 
we optimized risk scores for high AUROCs. Other accuracy 
measures were not necessarily preserved to the same degree. 
(3) Socioeconomic factors were unavailable within the EHRs 

used, thus omitted from the case studies. (4) The risk scores 
for DR and HFR created in the case studies require validation 
using external data.

Conclusion
In this study, we introduce a novel hyperparameter search 
algorithm intended to automatically determine an optimal 
amount of log-odds that should be calibrated to a single score 
in a risk scoring system to achieve a balance between accu-
racy and simplicity within the risk scoring system. The impli-
cations of our proposed approach in healthcare settings are 
substantial as it delivers simple yet accurate risk scores that 
support healthcare professionals and decision makers in 
patient stratification, treatment planning, and various medi-
cal decision-making processes. Additionally, on the patient 
side, the risk score encourages them to adopt healthier behav-
iors, undergo early screenings, and prioritize preventive 
measures before conditions deteriorate. Our future research 
will focus on evaluating the developed approach across a 
broader spectrum of health conditions and conducting exter-
nal validations for our new DR and HFR risk score systems. 
In addition, exploring improved algorithms that can balance 

Figure 4. Comparison among risk scores and logistic regressions in AUROC and AUPRC.
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multiple accuracy measures while streamlining the risk score 
scale presents an intriguing avenue for future work.

Acknowledgments
The authors gratefully acknowledge Oracle Cerner for shar-
ing Health Facts EHR database to support this research. Any 
opinions, findings, and conclusions or recommendations 
expressed in this material are those of the authors and do not 
necessarily reflect the views of Oracle Cerner.

Table 3. Risk scoring systems derived using B�; 5βage, and Bmin for DR 
and HFR.

Variable Level Risk score for DR

B� 5βage Bmin

Neuropathy No 0 0 0
Yes 3 11 638

Nephropathy No 0 0 0
Yes 2 6 365

Creatinine <0.5 0 0 0
[0.5, 1) 1 4 203
[1, 1.5) 2 9 502
[1.5, 2) 4 14 801
≥2 7 24 1357

HbA1c <6 0 0 0
[6, 8) 2 7 383
[8, 10) 4 13 767
[10, 12) 6 20 1150
≥12 8 30 1725

Diabetes duration <1 0 0 0
[1, 2) 0 2 96
[2, 3) 1 3 192
[3, 4) 1 5 287
≥4 4 15 833

White blood cell <4 4 14 773
[4, 6) 3 12 694
[6, 8) 3 10 589
[8, 12) 2 8 431
≥12 0 0 0

Glucose <60 0 0 0
[60, 80) 0 1 76
[80, 100) 1 3 166
[100, 200) 2 8 434
≥200 7 24 1393

Age <35 3 12 704
[35, 50) 2 9 515
[50, 65) 2 6 343
[65, 75) 1 4 200
[75, 85) 0 2 86
≥85 0 0 0

Hematocrit <30 6 21 1215
[30, 35) 5 16 933
[35, 40) 4 13 725
[40, 50) 2 7 415
≥50 0 0 0

Sodium <136 0 0 0
[136, 144) 3 11 620
≥144 5 19 1094

BUN <11 0 0 0
[11, 15) 0 0 3
[15, 19) 0 0 7
[19, 27) 0 0 14
≥27 0 0 24

Anion gap <5 3 11 648
[5, 7) 3 10 575
[7, 10) 2 8 453
[10, 12) 2 6 330
[12, 17) 1 3 159
≥17 0 0 0

Race African American 1 4 248
Other 1 2 124

Caucasian 0 0 0

Variable Level Risk score for HFR

B� 5βage Bmin

BUN <11 0 0 0
[11, 15) 1 4 727
[15, 19) 1 6 1308
[19, 27) 2 11 2180

(continued) 

Table 3. (continued) 

Variable Level Risk score for HFR

B� 5βage Bmin

≥27 3 19 3778
Hemoglobin <9 1 5 945

[9, 9.7) 1 3 702
[9.7, 10.3) 0 3 516
[10.3, 11.1) 0 2 315
≥11.1 0 0 0

Hematocrit <26.9 0 0 0
[26.9, 28.8) 0 2 377
[28.8, 30.7) 1 3 682
[30.7, 33.1) 1 5 1028
≥33.1 1 8 1573

Length of stay <5 0 0 0
[5, 7) 1 4 811
[7, 14) 2 13 2637
≥14 4 24 4869

preInp1Ya 0 0 0 0
1 1 6 1300
≥2 2 13 2600

preER1Yb 0 0 0 0
1 0 2 475
≥2 1 5 949

Charlson Comorbidity Index <4 0 0 0
[4, 6) 1 8 1678
≥6 2 10 2098

Age <65 0 0 0
[65, 75) 0 2 443
[75, 80) 1 4 745
[80, 85) 1 5 946
[85, 90) 1 6 1147
≥90 1 6 1248

Platelet count <143 0 0 0
[143, 177) 0 0 39
[177, 213) 0 0 74
[213, 268) 1 1 120
≥268 1 1 200

Potassium <3.6 0 1 260
[3.6, 3.9) 0 1 184
[3.9, 4.1) 0 1 130
[4.1, 4.4) 0 0 76
≥4.4 0 0 0

Sodium <134 0 1 112
[134, 136) 0 0 75
[136, 138) 0 0 50
[138, 140) 0 0 25
≥140 0 0 0

Creatinine <0.6 0 0 92
[0.6, 0.8) 0 0 75
[0.8, 0.9) 0 0 61
[0.9, 1.2) 0 0 39
≥1.2 0 0 0

a Number of inpatient visits within 1 year before.
b Number of emergency department visits within 1 year before.
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