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Credit Scoring: A Win-Win for Lenders & Borrowers

1 Credit scores serve as a valuable tool
that benefits credit providers by
minimizing risk and streamlining lending
processes.

2 It empowers consumers with financial
opportunities, better loan terms, and a
pathway to financial education and
responsibility.
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Are there similar risk scores in healthcare?
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A Risk Score Example:
LACE Score (Van Walraven
et al., 2010)

Component Value Score

L: Length of
Stay (days)

< 1 0
1 1
2 2
3 3

4-6 4
7-13 5
≥ 14 7

A: Acuity (Emergent)
Admission

No 0
Yes 3

C: Charlson
Comorbidity
Index Score

0 0
1 1
2 2
3 3

≥ 4 5

E: Emergency Department
Visits During

Previous 6 Months

1 1
2 2
3 3

≥ 4 4
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Risk Scores in Healthcare

Image: dashboardmd.com

LACE (Van Walraven et al., 2010) and HOSPITAL (Donzé et al., 2013) for
anticipating death or readmission after hospital discharge
Framingham Risk Scores for predicting coronary heart disease (Wilson et al., 1998;
DAgostino Sr et al., 2008)
IScore (Saposnik et al., 2011) for predicting death and disability after an acute stroke
Mortality Risk Score (Austin and van Walraven, 2011) for estimating mortality in
adults
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Benefits of Risk Scores

Image: Hospital Pharmacy Europe

Enhancing patient risk stratification for efficient
medical resource allocation

Empower patients for positive health
behavior change
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Steps in Developing Risk Scoring Systems

The main idea is to map regression units to
integer points by approximating the linear
combination ∑

n
i=1 βiXi in the logistic regres-

sion model (Sullivan et al., 2004):

P(Y = 1 | X ) =
1

1+e−(β0+β1X1+β2X2+...+βnXn)

Variable β Level Reference Height Risk ScoreValue

Sodium 0.092
< 136 131.5† 0 0 0

136 –144 140 8.5 0.78 1
≥ 144 146.5 15 1.38 2

1 Meaningful cutoffs −→ “Heights”

2 Map “height” to risk

▶ Risks are βSodium ×0,
βSodium ×8.5, βSodium ×15

3 Map risk to score

▶ Set the constant B: number of
regression units that reflect 1
point in the scoring system

▶ All risks divided by B, then
round to integers

Yajun Lu ⋄ Balancing the Scale and the Accuracy of a Risk Score ⋄ 2024 INFORMS Annual Meeting ⋄ 9/21



Impact of B Selection on Risk Score Performance & Interpretability

Currently, there are no specific rules for
selecting B:

B AUC Score Range

Large Low Small
Small High Largea

aWhen B = Bmin, the score range is 0–2,510
0 2 4 6 8 10

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

A relationship between constant B and area under the receiver
operating characteristic curve (AUC) for predicting Diabetic
Retinopathy.
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A Close-up View of B vs AUC

How can we select a B as large as
possible while maintaining a
reasonably high AUC value?
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Risk Score Derivation Framework

Obtain a candidate interval 
[ Bmin ,T ] with T = Bmax 

Refine the candidate interval 
by shifting T towards Bmin using 
golden section principle

AUROC at T ≥ 
99% of AUROC 

at Bmin
 ?

Find Bhighest that has the highest 

AUROC within [ Bmin, T ]

Search over B values from T 
towards Bhighest 

AUROCs at B 
and Bhighest are 
insignificantly 

different?

No

Yes

Start

Yes

No

Step 1: Logistic 
Regression 
Modeling

Step 2: Variable 
Discretization

Step 3: Level 
Measurement

Step 4: Setting 
Hyperparameter

Step 5: Risk 
Score Calculation

Proposed 
hyperparameter 
search approach

Return current B 
value as B∗

Step 4.1

Step 4.2

Step 4.3

Step 4.4

Flowchart of the risk scoring system and our
refinements in Step 4

Bmin

Bmax

AUC

B

𝐵∗Bhighest

𝑇𝑎𝑡 𝑡ℎ𝑒 𝑙𝑎𝑠𝑡 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛

𝑇𝑎𝑡 𝑡ℎ𝑒 1𝑠𝑡 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛

0.618

Refined candidate
interval

Golden sec6on 
search

Search within 
refined 
candidate
interval

0.382

An illustration of our search approach
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Case Study on Diabetic Retinopathy (DR) Prediction

DR is a vision-threatening microvascular
complication of diabetes (Yau et al., 2012).

DR is symptomless in early stages

Vision loss can be halted but not reversed

Current solution:

Early detection: Annual eye examination
guideline

Timely treatment: Laser surgery

Appropriate follow-up

Barriers to early detection:

Approximately 43% adherence rate to
annual eye examinations (Fisher et al.,
2016)

A lack of comprehensive screening
programs in rural areas
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Data Preparation

725,514 Diabetic patients extracted:
• Having diabetes diagnosis code(s) 
• Age is at least 18
• 1999-2016 (Years) 

Diabetic patients with complete lab records 
during the observation window (N=90,400)

• 87,020 non-DR patients
• 3,380 DR patients

Training
(N = 63,280)

Test
(N = 27,120)

Exclude patients with incomplete 
lab records (N=635,114) 

The workflow for the cohort development

Oracle Cerner Health
Facts® EHR data

31 Variables:
▶ Demographics:

gender, race, and age

▶ Complications:
nephropathy and
neuropathy

▶ Duration of diabetes

▶ 25 different routine
blood tests
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Risk Score for DR
Variable Levels Risk Score for DR

B∗ 5βage Bmin

Neuropathy No 0 0 0
Yes 3 11 638

Nephropathy No 0 0 0
Yes 2 6 365

Creatinine

<0.5 0 0 0
[0.5, 1) 1 4 203
[1, 1.5) 2 9 502
[1.5, 2) 4 14 801
≥ 2 7 24 1,357

HbA1c

<6 0 0 0
[6, 8) 2 7 383
[8, 10) 4 13 767

[10, 12) 6 20 1,150
≥ 12 8 30 1,725

Diabetes
Duration

<1 0 0 0
[1, 2) 0 2 96
[2, 3) 1 3 192
[3, 4) 1 5 287
≥ 4 4 15 833

White
Blood
Cell

<4 4 14 773
[4, 6) 3 12 694
[6, 8) 3 10 589
[8, 12) 2 8 431
≥ 12 0 0 0

Glucose

<60 0 0 0
[60, 80) 0 1 76

[80, 100) 1 3 166
[100, 200) 2 8 434
≥ 200 7 24 1,393

Variable Levels Risk Score for DR

B∗ 5βage Bmin

Age

<35 3 12 704
[35, 50) 2 9 515
[50, 65) 2 6 343
[65, 75) 1 4 200
[75, 85) 0 2 86
≥85 0 0 0

Hematocrit

<30 6 21 1,215
[30, 35) 5 16 933
[35, 40) 4 13 725
[40, 50) 2 7 415
≥50 0 0 0

Sodium
<136 0 0 0

[136, 144) 3 11 620
≥144 5 19 1094

BUN

<11 0 0 0
[11, 15) 0 0 3
[15, 19) 0 0 7
[19, 27) 0 0 14
≥27 0 0 24

Anion Gap

<5 3 11 648
[5, 7) 3 10 575

[7, 10) 2 8 453
[10, 12) 2 6 330
[12, 17) 1 3 159
≥17 0 0 0

Race
African American 1 4 248

Other 1 2 124
Caucasian 0 0 0
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Risk Score AUC & Scale Comparisons

0.0 0.2 0.4 0.6 0.8 1.0
1 Specificity
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ROC Curve for DR

B*, AUROC=0.803
Bmin, AUROC=0.804
5 age, AUROC=0.802
Logistic Regression AUROC=0.831

B∗ 5βage Bmin

AUC 0.803 0.802 0.804
Scale 0–53 0–191 0–11,018
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Concluding remarks
Simple yet accurate risk scores for patient stratification and resource allocation

User-friendly tools motivating healthier habits, reducing healthcare demand

Our case studies on diabetic retinopathy (DR) and hip fracture readmission (HFR)
demonstrate the effectiveness of our approach in generating simple, accurate risk
scores for disease prediction.

Potential general framework for simpler disease risk scoring

Manuscript Code
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Data Preparation for DR Prediction
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