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Credit Scoring: A Win-Win for Lenders & Borrowers

FICO Credit Score Ranges

670-739
Good
. 580-669 740-799
@ Credit scores serve as a valuable tool Fair Very Good
that benefits credit providers by — —
e . .. . 300-579 800-850
minimizing risk and streamlining lending Poor Exceptional
processes. - -
Source: FICO
@ It empowers consumers with financial e
opportunities, better loan terms, and a -

,
pathway to financial education and %
responsibility.
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Are there similar risk scores in healthcare?
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Component Value Score

<1 0

1 1

L: Length of 2 2

Stay (days) 8 3

4-6 4

7-13 5

> 14 7

A Risk Score Example: A: Acuity (Emergent) No 0
LACE Score (Van Walraven Admission Yes 3
et al., 2010) 0 0
C: Charlson 1 1

Comorbidity 2 2

Index Score 3 3

>4 5

E: Emergency Department 1 1

- . 2 2

Visits During 3 3

Previous 6 Months -4 4
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Risk Scores in Healthcare

Low HIGH
W 'il
Image: dashboardmd.com

@ LACE (Van Walraven et al., 2010) and HOSPITAL (Donzé et al., 2013) for
anticipating death or readmission after hospital discharge

@ Framingham Risk Scores for predicting coronary heart disease (Wilson et al., 1998;
DAgostino Sr et al., 2008)

@ IScore (Saposnik et al., 2011) for predicting death and disability after an acute stroke

@ Mortality Risk Score (Austin and van Walraven, 2011) for estimating mortality in
adults
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https://www.dashboardmd.com/healthcare-analytics-information/automated-patient-risk-scoring-stratification-updated-daily/

Benefits of Risk Scores

Image: Hospital Pharmacy Europe

Enhancing patient risk stratification for efficient Empower patients for positive health
medical resource allocation behavior change
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https://hospitalpharmacyeurope.com/covid-19/risk-assessment-tools-improve-emergency-medical-service-staff-triage-for-suspected-covid-19

Steps in Developing Risk Scoring Systems

The main idea is to map regression units to
integer points by approximating the linear
combination Y7, B;X; in the logistic regres-
sion model (Sullivan et al., 2004):

@ Meaningful cutoffs — “Heights”
Q@ Map “height” to risk

» Risks are Bsodium % 0,
Bsodium % 8.5, Bsodium % 15

© Map risk to score

» Set the constant B: number of

regression units that reflect 1
point in the scoring system

1
P(Y=1|X)=
( [ X) 1 + @ (Bo+B1 X1+B2Xo+...4BnXn)
. Reference . .
Variable B Level Value Height Risk Score
<136 131.57 0 0
Sodium  0.092 136-144 140 8.5 0.78
> 144 146.5 15 1.38

0 » All risks divided by B, then
round to integers
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Impact of B Selection on Risk Score Performance & Interpretability

0.85
o.so-‘*g‘..m
Currently, there are no specific rules for 0751
selecting B: 0.70 )
B | AUC Score Range 067
Large | Low Small 50
Small | High Large? 0.55
0.50 - ’ vee  ees . .
4When B = B;n, the score range is 0-2,510 0.45 . . . .
0 2 4 6 8 10

A relationship between constant B and area under the receiver
operating characteristic curve (AUC) for predicting Diabetic
Retinopathy.
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A Close-up View of B vs AUC

0.84 -
0.82 -

0.80 1

@ How can we select a B as large as 0.78 1
possible while maintaining a 0.76 |
reasonably high AUC value?

0.74 1
0.72 1

0.70 A

0.0 0.2 0.4 0.6 018
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9 Our Hyperparameter Search for Accurate and Simple Risk Scoring
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Risk Score Derivation Framework

AUC

Step 1: Logistic
Regression
Modeling

Step 2: Variable
Discretization

U

Obtain a candidate interval
(8, T]with

Step 4.1

15—

B Bm‘ghesr B*
'min

by shifting T towards B, , using
golden section principle.

Tat the last iteration

| Step4.2

Search within

Step 43 -
refined
"AUROC T2 Find B, _,that has the highest i
99% of AUROC e 9 candidate
AUROC within [B,, T] interval

Proposed .

Step 3: Level
Measurement

Step 4: Setting | search approach
Hyperparameter

Tat the 1st iteration

l S Search over B values fom T Refined candidate | Go/den section
interval
Step 5: Risk search B,..
Score Calculation
1 |
1 1 B
0.618 0.382

Flowchart of the risk scoring system and our An illustration of our search approach

refinements in Step 4
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e Case Study on Diabetic Retinopathy
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Case Study on Diabetic Retinopathy (DR) Prediction

Current solution:

@ Early detection: Annual eye examination
guideline

@ Timely treatment: Laser surgery

@ Appropriate follow-up

Barriers to early detection:

PN Annual eye examination is so far critical for early

[;iAabet{c Retir{o;a-t'hy Vision screening of DR. Unfortunately the adherence is poor [+ Approximate'y 43% adherence rate to
] o ) ) annual eye examinations (Fisher et al.,
@ DR is a vision-threatening microvascular 2016)

complication of diabetes (Yau et al., 2012). . _
) . @ A lack of comprehensive screening
@ DR is symptomless in early stages programs in rural areas

@ Vision loss can be halted but not reversed
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Data Preparation

725,514 Diabetic patients extracted:
* Having diabetes diagnosis code(s) @ Oracle Cerner Health

+ Ageis at least 18 FaCtS® EHR data
¢ 1999-2016 (Years)

@ 31 Variables:

gender, race, and age

» Complications:
nephropathy and
neuropathy

l l » Duration of diabetes

- » 25 different routine
(N=27,120) blood tests

The workflow for the cohort development
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Risk Score for DR

Risk Score for DR Risk Score for DR

Variable Levels Variable Levels
B SPage  Buin B SPae  Bun
No 0 0 [} <35 3 12 704
Neuropathy Yes 3 11 638 135, 50) 2 9 515
[50, 65) 2 6 343
Nephropathy 40 9 g 362 Age 165, 75) 1 4 200
© [75, 85) 0 2 86
<0.5 0 0 0 >85 0 0 0
[051) 1 4 203
Creatinine [.15 2 9 502 [333(?5) g 12; 13;2
i ->5'22) ‘; ;: ; gg; Hematocrit 35, 40) 4 13 725
> : [40, 50) 2 7 415
<6 0 0 0 >50 0 0 0
6,8 2 7 383 1% o o o
HbAtc 18,10) 4 13 767 Sodium [136, 144) 3 11 620
[10,12) 6 20 1,150 P H s 1004
12 8 30 1725 =
<11 0 ) 0
1<‘2 g g 92 [11, 15) 0 0 3
Diabetes [2' 3) ° 2 = BUN [15.19) 0 0 7
Duration 12.3) [19,27) 0 0o 14
B4 1 5 287 byt o o o4
>4 4 15 833 =
<5 3 11 648
) <4 4 47 5.7) 3 10 575
White @46 3 12 694 ‘ 17, 10) 2 8 453
Blood [6.8) 3 10 589 Anion Gap [10’ 12) 5 6 330
Cell 812 2 8 431 12 17) b 5 1%
=12 0 0 0 >17 0 0 0
6;6!?0 g ? 7g African American 1 4 248
60, 80) Race Other 1 2 124
Glucose [80, 100) 1 3 166 Caucasian 0 0 0
[100,200) 2 8 434
>200 7 24 1,393
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Risk Score Distributions

mm Number of Patients =e=DR %

6000 90%
2 80%
S 5000
k7 70%
& 4000 60%
Y
o 50% X
E 3000 40% 5
£ 2000 30%
>
> 20%
1000
I 10%
0 e 0%

2 34567 8 91011121314151617181920
Risk Score
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Risk Score AUC & Scale Comparisons

ROC Curve for DR

1.0

0.8 1

- 5Bage Bmin

»‘E 0.6
i AUC 0.802 0.804
(7]
" 04 Scale 0-191 0-11,018
I —— B, AUROC=0.803
0.21 s —— Bumin, AUROC=0.804
L —— 5Bage, AUROC=0.802
’/’ —— Logistic Regression AUROC=0.831
0.0 . . . .
0.0 0.2 0.4 0.6 0.8 1.0
1 — Specificity

Balancing the Scale and the Accuracy of a Risk Score ¢ 2024 INFORMS Annual Meeting o 19/21



Outline

e Concluding remarks

Balancing the Scale an: Accuracy of a Risk Score o 2024 INFORMS Annual Meeting ¢ 20/21



Concluding remarks

@ Simple yet accurate risk scores for patient stratification and resource allocation
@ User-friendly tools motivating healthier habits, reducing healthcare demand

@ Our case studies on diabetic retinopathy (DR) and hip fracture readmission (HFR)
demonstrate the effectiveness of our approach in generating simple, accurate risk
scores for disease prediction.

@ Potential general framework for simpler disease risk scoring
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Concluding remarks

@ Simple yet accurate risk scores for patient stratification and resource allocation
@ User-friendly tools motivating healthier habits, reducing healthcare demand

@ Our case studies on diabetic retinopathy (DR) and hip fracture readmission (HFR)
demonstrate the effectiveness of our approach in generating simple, accurate risk
scores for disease prediction.

@ Potential general framework for simpler disease risk scoring

Manuscript
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Data Preparation for DR Prediction

* Idea: Use data before the first DR diagnosis (Ng et al. 2016)
* Time windows
* Variable aggregation

Prediction Window

(6 months) X
Time

Aggregated for Whether DR
| Risk Prediction is onset
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