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Comorbidity

Comorbidity refers to two or more coexisting diseases or medical conditions in a patient (Feinstein,
1970; Gijsen et al., 2001) :

worse medical outcomes

more complex clinical treatments

increased medical costs
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Comorbidity Network

Source: Kalgotra et al. (2017); Kalgotra and Sharda (2021)

Better presentation of
disease associations (Divo
et al., 2015; Warner et al.,
2015)
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Comorbidity Over Time

Window 1 Window 2 Window 3 Window 4 Window 5 Window 6 Window 7

Window 8 Window 9 Window 10 Window 11 Window 12 Window 13 Window 14

Window 15 Window 16 Window 17 Window 18 Window 19 Window 20

Window 21 Window 22 Window 23 Window 24 Window 25 Window 26

An example of temporal disease networks (TDNs) and each
window spans 12 hours (Lu et al., 2021).

Comorbidity networks constructed
based on Cerner Health Facts®

EHR data:
I female patients aged 65 or older

with the onset of C.Diff between
November 1999 and August
2017

I 2,229,051 inpatient hospital visits

Comorbidity progression over 2
weeks
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Atomic Clique

Notations:
G : a collection of (simple and undirected) graphs2

G0: the support graph of the collection G ; i.e., the minimal super-graph that contains
every graph G ∈ G

V (G0): the vertex set of support graph G0

Definition (Lu et al. (2021))

Given a collection of graphs G with support graph G0, a subset of vertices S ⊆ V (G0) is
called an atomic clique if one of the following conditions hold in every graph G ∈ G :

1 S ⊆ V (G) and forms a clique in G, or
2 S∩V (G) = /0.

2The vertex sets of the graphs in G are not assumed to be identical.
Yajun Lu � On Atomic Cliques in Temporal Graphs � Workshop: PANOPTIC View on Global Optimization � 7/23



Atomic Clique

Notations:
G : a collection of (simple and undirected) graphs2

G0: the support graph of the collection G ; i.e., the minimal super-graph that contains
every graph G ∈ G

V (G0): the vertex set of support graph G0

Definition (Lu et al. (2021))

Given a collection of graphs G with support graph G0, a subset of vertices S ⊆ V (G0) is
called an atomic clique if one of the following conditions hold in every graph G ∈ G :

1 S ⊆ V (G) and forms a clique in G, or
2 S∩V (G) = /0.

2The vertex sets of the graphs in G are not assumed to be identical.
Yajun Lu � On Atomic Cliques in Temporal Graphs � Workshop: PANOPTIC View on Global Optimization � 7/23



Atomic Clique

Notations:
G : a collection of (simple and undirected) graphs2

G0: the support graph of the collection G ; i.e., the minimal super-graph that contains
every graph G ∈ G

V (G0): the vertex set of support graph G0

Definition (Lu et al. (2021))

Given a collection of graphs G with support graph G0, a subset of vertices S ⊆ V (G0) is
called an atomic clique if one of the following conditions hold in every graph G ∈ G :

1 S ⊆ V (G) and forms a clique in G, or
2 S∩V (G) = /0.

2The vertex sets of the graphs in G are not assumed to be identical.
Yajun Lu � On Atomic Cliques in Temporal Graphs � Workshop: PANOPTIC View on Global Optimization � 7/23



Atomic Clique Example

Definition (Lu et al. (2021))

Given a collection of graphs G
with support graph G0, a
subset of vertices S ⊆ V (G0) is
called an atomic clique if one
of the following conditions hold
in every graph G ∈ G :

1 S ⊆ V (G) and forms a
clique in G, or

2 S∩V (G) = /0.
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Figure 1: Three graphs {G1,G2,G3}.
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Figure 2: Four atomic cliques {1,2,3}, {4}, {5,6}, and {7} across three
graphs {G1,G2,G3}
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Streamlined Visualization by Atomic Clique Partition
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Phase 1: |V|=6, |E|=15 Phase 2: |V|=9, |E|=33 Phase 3: |V|=12, |E|=65

Phase 4: |V|=30, |E|=428 Phase 5: |V|=38, |E|=688

AC0 AC0
AC0

AC0

AC0

Some diseases (acute renal
failure–node 5, fluid and
electrolyte disorder–node 88,
other gastrointestinal
disorders–node 167, and
septicemia–node 211) along
with C. Diff (node 0) form an
atomic clique (marked as
AC0) that occurs persistently
across all phases.

Many clinical studies (Bauer
et al., 2012; Doshi et al.,
2018) have reported similar
findings that these diseases
are highly associated with
C. Diff.

Yajun Lu � On Atomic Cliques in Temporal Graphs � Workshop: PANOPTIC View on Global Optimization � 9/23



Streamlined Visualization by Atomic Clique Partition
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New diseases appeared at
later phases tend to occur
together.

For example, urinary tract
infection (UTI, node 228)
appears in Phases 3–5 and
forms an atomic clique along
with cardiac dysrhythmias
(node 55), chronic kidney
disease (node 57), and
disorders of lipid metabolism
(node 78).

This result echoes a previous
study finding that UTI is
associated with prolonged
hospitalization of C. Diff
patients (Warner et al., 2013).
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Research Gaps

Lu et al. (2021) presented an integer programming (IP) based heuristic to partition
V (G0) into atomic cliques, but no exact algorithms were proposed.

No IP formulations for atomic cliques exist.
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Edge Peeling for Atomic Cliques

Algorithm 1: Edge Peeling: Generic Version for Atomic Cliques.
Input: a collection of graphs G

1 while ∃uv ∈ E(G)\E(H) for some G,H ∈ G and V (H)∩{u,v} 6= /0 do
2 delete edge uv from every graph that contains it

3 return G
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Consistent Connected Components

Lemma 1

Algorithm 1 produces a consistent set of connected components after edge peeling. That
is, if J ∈ cc(G) and K ∈ cc(H) for graphs G,H ∈ G , where G is the output of Algorithm 1,
then one of the following conditions holds:

1 Either V (J)∩V (K ) = /0; or,
2 J and K are identical graphs, i.e., V (J) = V (K ) and E(J) = E(K ).
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Transformation from Atomic Clique to Clique

Theorem 1

Let G ′ and G be the input and output of Algorithm 1, respectively. Let Ĝ be the (auxiliary)
graph whose connected components are precisely the union of the consistent set of
connected components of the graphs in the collection G . In other words, we let
V (Ĝ) :=

⋃
G∈G

V (G) and E(Ĝ) :=
⋃

G∈G
E(G). Then, S is an atomic clique of G ′ if and only S

is a clique of Ĝ.
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IP Formulation for the Maximum Atomic Clique Problem (MACP)

max ∑
u∈V (G0)

xu (1a)

xu +xv ≤ 1 ∀uv ∈ E(G),G ∈ G (1b)
xu +xv ≤ 1 ∀u ∈ V (G),v 6∈ V (G),G ∈ G (1c)

xu ∈ {0,1} ∀u ∈ V (G0) (1d)
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Computational Experiments

Goal: Gauge the effectiveness of edge peeling in conjunction with a maximum clique solver
in solving the maximum atomic clique problem

Test-bed: Real-life temporal graph collections from the Stanford Large Network Dataset
Collection (SNAP) (Leskovec and Krevl, 2014) and graph collections generated from
DIMACS Clique Challenge benchmarks (Johnson and Trick, 1996)

Software: GurobiTM Optimizer v9 and implemented in C++

Hardware: 64-bit Linuxr compute node with dual intelr Skylake 6130 processors and 96
GB RAM at the High Performance Computing Center at Oklahoma State University

Yajun Lu � On Atomic Cliques in Temporal Graphs � Workshop: PANOPTIC View on Global Optimization � 16/23



Outline

1 Motivation

2 Edge Peeling & IP Formulation

3 Computational Experiments

4 Concluding Remarks

Yajun Lu � On Atomic Cliques in Temporal Graphs � Workshop: PANOPTIC View on Global Optimization � 17/23



Results for Stanford Large Network Benchmarks

Comparing edge peeling followed by solving maximum clique against directly solving the
maximum atomic clique problem IP formulation on SNAP temporal graph benchmarks.

Wall-clock time (sec)
Name |V (G0)| |G | ∑G∈G |E(G)| |E(Ĝ)| Objective EP+WB EF

CollegeMsg new 1,899 7 15,714 146 4 0.01 116.46
sx-mathoverflow new 24,818 8 213,564 1,429 3 0.13 LPNS
sx-askubuntu new 159,316 8 464,237 23,238 3 0.64 MEM
sx-superuser new 194,085 9 734,144 19,227 3 0.87 MEM
wiki-talk-temporal new 1,140,149 8 2,872,615 112,510 5 3.61 MEM
sx-stackoverflow new 2,601,977 9 28,879,562 220,687 4 37.05 MEM

EP: Edge Peeling

WB: An effective max clique solver for sparse graphs by Walteros and Buchanan (2020)

EF: Enhanced formulation

The entry “LPNS” means that the root LP relaxation was not solved to optimality under the one–hour time limit. The
entry “MEM” indicates that the solver did not terminate gracefully due to a memory–related crash.
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Results for Instances Based on DIMACS Clique Challenge
Benchmarks

EF

EP+WB

Performance profile comparing the two approaches for solving the maximum atomic clique
problem.
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Concluding Remarks
Atomic clique is a new network model used for analyzing disease progression.
We presented a polynomial-time algorithm that transforms the maximum atomic
clique problem to the maximum clique problem on an auxiliary graph.
Computational results demonstrate the effectiveness of this transformation in solving
the maximum atomic clique problem in comparison to direct integer programming
based approaches.
The proposed approach is also applicable when solving variants like the minimum
atomic clique partitioning problem or the maximum weighted atomic clique problem.

Code Shared on Github
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ylu@jsu.edu
https://yajunlu.com
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Algorithm 2: Edge Peeling for Atomic Cliques.
Input: G

1 Construct support graph G0

2 I (v)←{G ∈ G : v ∈ V (G)} ∀v ∈ V (G0)

3 J (uv)←{G ∈ G : uv ∈ E(G)} ∀uv ∈ E(G0)

4 contain[v ,G]← false ∀v ∈ V (G0),G ∈ G

5 for v ∈ V (G0) do
6 for G ∈I (v) do
7 contain[v ,G]← true

8 V (Ĝ)← V (G0),E(Ĝ)← /0
9 for uv ∈ E(G0) do

10 preserve← true

11 contain-edge[G]← false ∀G ∈ G
12 contain-edge[G]← true ∀G ∈J (uv)
13 for G ∈ G do
14 if contain-edge[G] = false then
15 if contain[u,G] = true or contain[v ,G] = true then
16 preserve← false

17 break

18 if preserve = true then
19 E(Ĝ)← E(Ĝ)∪{uv}

20 return Ĝ
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Formulation refinements

∑
J∈cc(G)

yG
J ≤ 1 ∀G ∈ G (2a)

xu ≤ yG
J ∀u ∈ V (J),J ∈ cc(G),G ∈ G (2b)

xu +xv ≤ 1 ∀uv ∈ E(J),J ∈ cc(G),G ∈ G (2c)

yG
J ∈ {0,1} ∀J ∈ cc(G),G ∈ G (2d)

xv ≤ 1−zG ∀v 6∈ V (G),G ∈ G (3a)
xu ≤ zG ∀u ∈ V (G),G ∈ G (3b)
zG ∈ {0,1} ∀G ∈ G (3c)
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